
December 1999 The Delphi Magazine 65

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

<HTML>
<BODY>
<H1>
Data entry:
</H1>
<FORM ACTION="/scripts/WebTest.exe/ShowDetails" METHOD="POST">
Enter your name:
<INPUT TYPE=TEXT NAME=YourName>
<P>
<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM>
</BODY>
</HTML>

➤ Listing 1: The HTML input form from the web server application.

TWebBrowser
Documentation Problem

QI’m trying to figure out how
to get (read and write) the

data returned by the PostData pa-
rameter of the TWebBrowser.Before-
Navigate2 event. It’s supposed to
be a Variant array, but no matter
what I try, I can’t seem to get a
sensible value out of it (or in it).

ABefore looking for the an-
swer to this question, we

should understand what the
questioner is asking. TWebBrowser is
the ActiveX version of Internet
Explorer. I described how to im-
port and install this ActiveX onto
the ActiveX page of the component
palette of Delphi 2, 3 and 4 in Issue
47 (the Using Internet Explorer en-
try in The Delphi Clinic). Delphi 5
comes with the component pre-
installed on the component
palette’s Internet page.

The component allows you to
write an application that has web
browsing facilities. Its Before-
Navigate2 event allows you to inter-
cept any URL that the browser is
told to go to, whether by program
control, by user input, or by
hyperlinks on a web page. The job
of the PostData parameter of the
event handler is to represent data
sent to the server when an HTTP
post operation occurs, for example

by an HTML input form. PostData
should contain the unparsed string
giving the values to be posted with
their associated fields.

If you are familiar with writing
web server applications using
Delphi’s Web Bridge technology
(applications that are started with
File | New... | Web Server Applica-
tion) then PostData represents
what will ultimately be the Content
property of a TWebRequest object. In
a web module, accessing the
Request property gives you a
TWebRequest object.

Now we can start looking at the
problem itself. A sample web
browsing application is on this
month’s disk as WebBrowser.Dpr.
This is a Delphi 5 project using a
TWebBrowser component, but which
would be easy to change to work
with Delphi 3 or 4. The primary
issue is that when the Internet
Explorer ActiveX is imported in
these earlier versions, the event
handler parameters are a little
different.

The program navigates to a spe-
cific URL. The URL repre-
sents a call to a CGI web
server application, which is
also on the disk as
WebTest.Dpr. The web
browser project assumes
WebTest.Exe will be found
in the Scripts directory off
the web server’s virtual
root directory. This means
that it also assumes your

machine has some web server
running on it (I was running
Microsoft’s Personal Web Server
to test this problem).

The techniques and issues of
writing web server applications
are beyond the scope of this
column, but you can find many
articles on the subject in back
issues of The Delphi Magazine. The
Collection ‘99 CD-ROM, containing
the first 48 issues, should help you
out here.

WebTest.Exe is a web server
application (which compiles in
Delphi 3 or later) that can display
two pages of HTML. The default
page is an input form that asks the
user for a piece of information
(their name) which is then passed
back to the server via the Submit
button. The HTML for this is
shown in Listing 1 and you can see
the application running in Figure 1.
This shows that when the Submit
button is pressed, WebTest.Exe is
run again with a /ShowDetailspath,
and the text typed into the edit box
on the form, which represents the
YourName field, will be posted back
alongside.

When the web browser applica-
tion launches the input form the
BeforeNavigate2 event will fire, but
there will be no posted fields and
so PostData is not expected to con-
tain anything useful. When the
application user types in their
name and presses the Submit
button the event will fire again.

➤ Figure 1: The web server
application’s input form.

66 The Delphi Magazine Issue 52

This time, PostData should contain
all the details of posted fields. The
question is asking how to get this
information from the parameter.

If you read the documentation
for the event, you will see that
PostData is a var parameter (a pass
by reference parameter) of type
OleVariant, which is a more true-
to-Windows version of a Variant.
You should be able to examine this
parameter with the various Variant
support routines in the System unit
to ascertain what type of data it
holds. You might expect the data
to be some form of string, or maybe
a Variant array of bytes, given the
varying length of textual data that
should be there and this, I think,
is where the querstioner’s problem
lies.

If you pass PostData to the
VarType function, it will return a
value made up of bit flag constants,
defined in the System unit. A state-
ment in the event handler like this:

ShowMessageFmt(
‘Data type is $%x’,
[VarType(PostData)]);

tells us the type data is $400C,
which is equivalent to the expres-
sion varVariant or varByRef. What
this means is that PostData does
not actually hold the data we are
interested in. It instead holds a ref-
erence to another Variant that
holds the data. Before you can
start examining what data was
posted, we have to extract this
other Variant.

To do this, you can declare a
local OleVariant variable in the
event handler and use code like
Listing 1. With this code, Tmp will
now contain the posted field data.
To find in what format the data is

stored, you can make a call to
VarType(Tmp), which returns $2011,
equivalent to the expression
varArray or varByte. This proves
that ultimately the data is stored as
a Variant array of bytes.

Since the data is textual, extra
code can extract the data from the
byte array and do anything with it.
Listing 3 writes the information on
the form’s caption bar (see Figure
2) by locking the array and reading
directly from its contents into a
string, after calculating how long
the string should be.

Local Share Requirement

QI read your article about Par-
adox File Corruption and was

happy to find one place that covers
so many aspects of this annoying
problem. We are about to add the
source code to our projects and
would like to ask the following. Are
all the Windows 95 issues also rele-
vant to Windows 98? Is there a way
to change the LOCAL SHARE to TRUE
automatically? Have you come

procedure TForm1.BrowserBeforeNavigate2(Sender: TObject;
const pDisp: IDispatch; var URL, Flags, TargetFrameName, PostData,
Headers: OleVariant; var Cancel: WordBool);

var
Tmp: OleVariant;

begin
Tmp := OleVariant(TVarData(PostData).VPointer^);

end;

➤ Above: Listing 2 ➤ Below: Listing 3

procedure TForm1.BrowserBeforeNavigate2(Sender: TObject;
const pDisp: IDispatch; var URL, Flags, TargetFrameName, PostData,
Headers: OleVariant; var Cancel: WordBool);

var
Tmp: OleVariant;
S: String;
P: Pointer;

begin
Tmp := OleVariant(TVarData(PostData).VPointer^);
if VarIsArray(Tmp) then begin
SetLength(S, VarArrayHighBound(Tmp, 1) - VarArrayLowBound(Tmp, 1) + 1);
P := VarArrayLock(Tmp);
try
Move(P^, S[1], Length(S));
Caption := S

finally
VarArrayUnlock(Tmp)

end
end

end;

➤ Figure 2: The BeforeNavigate2
event handler at work.

across any more information on
the subject since writing the
article?

AAs far as I am aware, with the
exception of the driver is-

sue, which is fixed in Windows 98,
all the registry settings are either
relevant to Windows 98, or will do
no harm if applied.

The code in Listing 4 sets LOCAL
SHARE to TRUE in the BDE configura-
tion file. You can see that it
requires the BDEunit to be added to
your uses clause and then makes a
number of BDE API calls to do the
job.

When the BDE Administrator is
used to change configuration set-
tings, it warns that all BDE applica-
tions must be closed and restarted
for the change to take effect. The
same is true with this code
snippet.

After applying all the changes
made in the original article, some
people still seem to get issues here
and there. However, the article
represents all I know on the
subject, assuming you are refer-
ring to the updated version on the
web at www.itecuk.com/delmag/
paradox.htm rather than the
original article in Issue 42.

Computer Picker

QI am starting to write a client
application for a DCOM

December 1999 The Delphi Magazine 67

uses
BDE;

procedure EnsureLocalShareIsTrue;
var
Cursor: HDBICur;
ConfigDesc: CFGDesc;

begin
Session.Open;
Check(DbiOpenCfgInfoList(
nil, dbiREADWRITE, cfgPERSISTENT, '\SYSTEM\INIT', Cursor));

try
while DbiGetNextRecord(Cursor, dbiNOLOCK, @ConfigDesc, nil) = 0 do
with ConfigDesc do begin
if (CompareText(szNodeName, 'LOCAL SHARE') = 0) and

(CompareText(szValue, 'FALSE') = 0) then begin
szValue := 'TRUE';
Check(DbiModifyRecord(Cursor, @ConfigDesc, True));

end
end

finally
DbiCloseCursor(Cursor)

end;
end;

➤ Above: Listing 4 ➤ Below: Listing 5

server. The server application may
be located on a number of ma-
chines around the network, and I
want the client application user to
choose which machine to run it
from. This means I need some way
to choose a machine from the vari-
ous ones on my network. How do I
do this?

ARather than trying to work
this one out for myself, I

thought I’d see what I could find
within Delphi itself. The TDCOM-
Connection component in my copy
of Delphi 5 has a property called
ComputerName, which has a property
editor that does exactly what you
want. It launches a dialog showing
the network and all the machines
on it, allowing you to choose one.
The TSocketConnection component
has a Host property that does
exactly the same.

The nice thing
about Delphi 5 is that
it comes with the
source to many of the
property and compo-
nent editors used by
the standard compo-
nents. In the Source\
Property Editors
directory, the file
MidReg.Pas contains
the code for the MIDAS
property and compo-
nent editors. A class
called TComputerName-
Property does just
what we want. Well, almost. Of
course, the class is designed as a
property editor, so a small amount
of work is required to turn it into a
function (see Listing 5).

You can see the function makes
use of a Windows shell routine,
SHBrowseForFolder, set up to look

uses
ShlObj;

function GetComputerName: String;
var
BrowseInfo: TBrowseInfo;
ItemIDList: PItemIDList;
ComputerName: array[0..MAX_PATH] of Char;
WindowList: Pointer;
Success: Boolean;

begin
if Failed(SHGetSpecialFolderLocation(
Application.Handle, CSIDL_NETWORK, ItemIDList)) then
raise Exception.Create('Computer Name Dialog Not Supported');

FillChar(BrowseInfo, SizeOf(BrowseInfo), 0);
BrowseInfo.hwndOwner := Application.Handle;
BrowseInfo.pidlRoot := ItemIDList;
BrowseInfo.pszDisplayName := ComputerName;
BrowseInfo.lpszTitle := 'Select Remote Machine';
BrowseInfo.ulFlags := BIF_BROWSEFORCOMPUTER;
WindowList := DisableTaskWindows(0);
try
Success := SHBrowseForFolder(BrowseInfo) <> nil;

finally
EnableTaskWindows(WindowList);

end;
if Success then
Result := ComputerName

else
Result := ''

end;

➤ Figure 3:
Selecting a computer name.

for computer names. A simple test
project is on the disk as
ComputerNameSelector.Dpr and
can be seen strutting its stuff in
Figure 3.

Form Painting Puzzle

QI do not understand why the
button OnClick event han-

dler (shown in Listing 6) does not
work the way it is supposed to.

When I click the button, the
application waits for one second
and then the panel turns blue. It
completely bypasses the first line.
If I add a call to Application.
ProcessMessages after the line that
changes the panel to red, then
everything works fine, but then I
understand that calling Applica-
tion.ProcessMessages repaints the
screen.

Why does the panel not turn red
of its own volition? I cannot repro-
duce this problem with Visual
Basic 5.

AThe answer to this question
is that the panel does not

turn red upon execution of the rel-
evant statement because it is un-
able to do so at that point. In the
case of a Visual Basic panel, I can
only assume that the implementa-
tion has extra code to ensure that
it does happen, taking a not en-
tirely dissimilar approach to that
of Application.ProcessMessages.

To appreciate the problem fully
requires an understanding of how
event handlers are executed in the

68 The Delphi Magazine Issue 52

context of an application running
in a Windows environment, and
what exactly Application.Process-
Messages does.

Windows is a message-based
system. When certain things
happen, such as the user moving
the mouse or pressing keys, or a
timer’s time-out expiring, mes-
sages are sent along to various
windows in the system. Some other
causes of messages include set-
tings in Control Panel being
changed, and an application’s
window(s) becoming invalid, pos-
sibly due to the application being
restored from an icon, or being
made visible thanks to another
application being closed.

Typically, the messages are
dropped into a per-application
message queue. Your application
has a message loop, tucked away
inside the Application object, in
the private ProcessMessage method
(not to be confused with the public
ProcessMessages method men-
tioned in the question). This loop
polls the message queue to see if
any messages are present. If there
are, the first one is plucked out and
code executes to process it.

What processing is required
depends upon the message that is
found. It may just require calling
the Windows API that asks for
standard message processing if
the application is not interested in
doing anything special (Def-
WindowProc). However, for many
messages, the VCL will have mes-
sage handlers set up to perform
special processing. In many cases,
these message handlers will call
event handlers of components that
the messages were targeted to.

When a message is present in the
queue as a result of a button being
pressed, the following sequence of
events occurs at some later point.
The message loop extracts the
message from the queue and gives
it, in some way, to the button. The
button’s appropriate message han-
dler calls a routine inside the
button (called Click) to check if
there is an event handler set up for
an OnClick event. If so, the event
handler is called. The event han-
dler executes, taking as long as it
needs to do so and then finally

procedure TForm1.Button1Click(Sender: TObject);
begin
Panel1.clColor := clRed;
Sleep(1000);
Panel1.clColor := clBlue;

end;

exits. Control goes back to Click,
then back to the message handler,
and then finally back to the mes-
sage loop which can then check for
more messages.

The point here is to note that no
messages are being plucked from
the message queue whilst the
event handler is executing. Conse-
quently, if the event handler itself
executes statements that will
cause extra messages to be placed
in the message queue, they will be
left there until some point after the
event handler has completed.

Now let’s look at the event han-
dler in the question. The first state-
ment assigns a new colour to the
panel. This requires the panel to be
redrawn. In the standard Windows
way, this is achieved by posting a
wm_Paint message into the applica-
tion message queue. This message
will stay in the message queue until
the message loop is next able to
extract messages. The event han-
dler then proceeds to suspend
itself for one second, but the mes-
sage loop is still inactive, waiting
for both the event handler, and the
message handler that called the
event handler, to finish. The next
action is for another colour to be
given to the panel, causing another
wm_Paint message to be placed in
the message queue.

At this point, there are conceptu-
ally two wm_Paint messages sitting
in the application message queue
waiting to be processed. Neither of
them has been processed at this
point because the message loop is
still waiting for the event handler
and message handler to finish. At
last, the event handler exits, the
message handler can exit and the
message loop then picks up the

paint messages and deals with
them. The net effect is that after all
statements in the event handler
have executed, the panel turns
blue.

Clearly, because of the way the
message loop in a Windows appli-
cation operates, if several paint
messages like the ones generated
here for a given window (such as a
control) are placed in the queue,
only the last one has any real
effect. Because of this, Windows
actually optimises multiple paint
messages by merging them all into
one. So in truth, by the time the
event handler terminates, there is
only one paint message waiting to
be processed. The statement that
changed the panel to red ends up
causing nothing to happen.

The whole point of the question
is how to make sure the red colour
assignment does have an effect.
Which translates to a question of
how to get messages pulled from
the queue and processed when the
main message loop is waiting for
event handlers etc to finish.

The normal answer to this ques-
tion is to suggest a call to Applica-
tion.ProcessMessages somewhere
after the statement that causes the
message(s) to go into the queue
(see Listing 7). Application.
ProcessMessages executes another
version of the message loop, which
runs through the queue, process-
ing all the messages it finds there.
It does not necessarily cause the
form to be redrawn, unless there
happens to be a wm_Paint message
pending the queue, targeted at the
form window.

The thing about Application.
ProcessMessages, though, is that it
processes all messages, not just

procedure TForm1.Button1Click(Sender: TObject);
begin
Panel1.clColor := clRed;
Application.ProcessMessages;
Sleep(1000);
Panel1.clColor := clBlue;

end;

➤ Above: Listing 6 ➤ Below: Listing 7

70 The Delphi Magazine Issue 52

the paint message. If you just want
the panel to be turned red, and you
do not want any other mouse
clicks, drags, key presses and so on
to be processed, then Applica-
tion.ProcessMessages is overkill.
Fortunately, all visual controls
have a dedicated method that
allows you to get any pending paint
messages for them to be processed
if there are any, but otherwise to
do nothing. This method is called
Update. Listing 8 shows the code
using Update.

The questioner mentioned that
Visual Basic didn’t suffer from this
‘problem’. I can only assume that
when you change any property of a
Visual Basic object that has an
on-screen ramification, it calls the
equivalent of Update automatically.
An event handler that makes many
modifications to the appearance of
one object will therefore cause
many screen updates in a Visual
Basic application, but very few in a
Delphi application. This may be
one of the reasons that screen
updating in Visual Basic applica-
tions is deemed to be slower than
would be desirable to their users.

Dual Processor Woes

QI have an application that
has been running perfectly

well on several machines for some
time. Now, one of my customers
has installed a dual processor ma-
chine, and this is where the prob-
lem starts. Every now and again my
application fails in various ways,
including Access Violations, on the
dual processor machine. The prob-
lem is intermittent and unpredict-
able and I am wondering if there
are known issues with Delphi
applications on these type of
machines.

AAssuming your application
is multi-threaded and is writ-

ten in Delphi 2, 3 or 4, then I may
have some useful information for
you. During the development of
Delphi 5, a lot of work was put into
isolating certain intermittent prob-
lems that did crop up with Delphi
applications running on SMP (that
is, Symmetric Multi-Processing)
hardware.

Primarily the threading problem
identified in Delphi 4 was with
string reference counting. The RTL
string handling routines read the
string reference count into a CPU
register, increment (or decrement)
the register, then put the value
back into memory. That’s a prob-
lem if multiple threads are running
around. If a thread switch occurs in
the middle of this three-step cycle,
and another thread does the same
thing to the same string you’ll end
up with a heap leak (string not
freed) or a double free (string freed
twice, which is potential Access
Violation territory).

Now, threads have been around
in Delphi for ages, and strings
never really presented a problem
before. At least, not noticeably. To
get this to be a problem, you had to
be accessing the same string
instance from multiple threads,
like reading from a global string
variable, or from a string property
of a global or shared object. Even
then, the window of opportunity
for this bug to reproduce is very,
very small (only three instructions
wide). On a single processor
machine, the time-slice between
threads is relatively large (several
milliseconds) so the chances of a
thread switch happening right in
the middle of those three
instructions is very slim.

With multiple processors exe-
cuting code simultaneously, the
granularity of concurrency is
reduced from the several millisec-
ond time-slice down to a single
instruction. Every instruction is an
opportunity for a thread collision,
because the other processor is
running code at the same time. So,
even though the window of oppor-
tunity is still only three instruc-
tions wide, we now have a 1,000
times greater chance of threads
colliding in that area.

The test case Inprise used was
an application that would some-
times raise an exception if left run-
ning for days at a time on a single
processor machine. They were
never able to get this to happen on
demand in the debugger. When the
application was run on a dual
processor machine, the crash
occurred in less than two minutes.

The fix for strings in Delphi 5 was
to devise a way to do reference
counting in a thread-safe manner.
The simplest solution would be to
use an application-wide critical
section. Lock the critical section
before accessing/updating the
memory, and release it when done.
That’s fine for most code (critical
sections are the least intrusive
form of thread synchronisation),
but string reference counting
happens a lot in a Delphi applica-
tion, so performance was still a
worry.

The realisation came that since
all the string RTL routines are writ-
ten in assembler, and they only
need to know if decrementing the
reference count produces a zero
value, they could replace the read/
modify/write sequence of three
instructions with a single inc/dec
memory instruction. The inc/dec
memory instruction will set the
CPU flags register to indicate if the
result was a zero or not.

Now, a single instruction to
increment a value in memory is
still a read/modify/write opera-
tion. It is not an atomic operation
from the viewpoint of the system
memory bus. To make it atomic
(and multi-processor safe), they
added a LOCK prefix. This locks the
system bus for the duration of the
instruction, preventing the other
processor from seeing that area of
memory until the instruction has
completed.

LOCK should also force the other
processor to flush its internal
cache so that it does not read old
cached values of that updated
memory location. Smart chipsets
will only invalidate the cache lines
that refer to that memory area,
whereas not so smart chipsets
(like the PII) flush the entire cache.
Flushing caches may be expensive,
but it’s still cheaper than a critical
section.

procedure TForm1.Button1Click(
Sender:TObject);

begin
Panel1.clColor := clRed;
Panel1.Update;
Sleep(1000);
Panel1.clColor := clBlue;

end;

➤ Listing 8

72 The Delphi Magazine Issue 52

If you’re working at the source
code level, it is best to assume that
all source code statements involve
more than one machine operation.

Probably 90% of threading prob-
lems are caused by unprotected
read/modify/write cycles. Multiple
threads can read from a shared
value unsynchronised without
causing problems. The problems
start when that shared value needs
to be updated.

Look for global variables and
other shared resources (proper-
ties of a global object) as possible
thread collision points. Local
variables and parameters, stored
on the stack, are inherently
thread-safe.

Pay attention to COM threading
models. In particular, access to
global data as well as instance data
(implicitly accessed through Self)
is not thread-safe in free-threaded
apartment model (Free in the COM
object wizard’s Threading Model:
option).

All the above information can be
used to isolate why your applica-
tion may be failing. If it is string
access, then moving to Delphi 5
might be an option. If it is some
other resource that has not been
properly synchronised, then that
can be fixed. An alternative to
working out how to remedy the
problem is to avoid the problem.
Multi-processor machines allow
applications to restrict themselves
to executing on a single processor.

A call to GetProcessAffinityMask
returns gives you a DWord contain-
ing a bit mask indicating which pro-
cessors the threads of the
application can run on. You can
then modify the affinity mask and
call SetProcessAffinityMask to
restrict the application to a single
processor.

What? More Easter Eggs?
As an update to the list of Delphi 5
Easter Eggs presented in Issue 50,
here are details of another one.

Allen Bauer, the Delphi and
C++Builder IDE R&D Manager and
Senior R&D Engineer, was recently
dropping hints in a newsgroup
about an obscure Easter Egg that is
accessed without going to the
About box. He mentioned that it is

not well known internally at
Inprise, let alone by people outside
the company. Hallvard Vassbotn,
writer of many low-level articles in
past issues of this magazine, took
the bait and set to work finding it.
Here are the results.

Make a text file, either in the IDE
with File | New... | Text, or using
Notepad, or Windows Explorer.
Save the text file with a .Allen
extension, as opposed to a .Txt
extension. Start a new project in
Delphi 5 and open the project man-
ager (View | Project Manager or
Ctrl+Alt+F11). Right click on the
project, choose Add... and use the
Files of type: combobox to show
Any file (*.*). Choose the .Allen
file and press Open to add it to the
project.

At this point, right clicking on
the text file will give you a menu
including the entry Meet Allen
Bauer. Choosing this menu item
first displays a message box saying
Hi I’m Allen and then launches
your web browser to show the
following URL:

www.on24.com/corporatevideo/
borland/3-5_56.html

This is a web page showing a video
of Allen Bauer talking about some
of the new features added in
C++Builder 4.

If you now compile the project
(Ctrl+F9), the compiler will pro-
duce some additional credits to
the IDE developers (see Figure 4). A
side effect of the compilation is to
also produce another empty text
file with the same name, but a
.Allen.Bauer extension.

Corrections
As can be expected in a problem-
solving column, where many
issues are dealt with each month,
occasional errors inevitably creep
in.

In Issue 50, the Custom TLabel
Component entry described a
hyperlink-style label component.
Listing 10 showed code that would
work in any version of Delphi, but
the file on disk had older code, that
will only work in 32-bit versions of
Delphi. This month’s disk has an
updated version of the file,
HLLabel.Pas that works just as well
with version 1 as with any other
version.

In Issue 49's Daylight Savings
Changeover entry, the project
made use of some constants that
were only defined in the Windows
unit in Delphi 4 and later, causing
problems if you try and compile in
Delphi 2 or 3. A new version of the
project is on the disk this month
which compiles happily in all
32-bit versions. Unfortunately this
was not the only problem. As you
can see in Figure 1 of p66 of Issue
49, the UK daylight savings change
dates were out by a whole month
[Oops! Sorry]. The updated code
on this month’s disk fixes that
error as well.

Acknowledgements
Thanks go to Danny Thorpe from
the Delphi R&D team for sharing
his knowledge of SMP hardware
issues and how Delphi 5 now deals
with them better.

➤ Figure 4: The obscure Delphi 5
Easter Egg uncovered.

	TWebBrowser Documentation Problem
	Local Share Requirement
	Computer Picker
	Form Painting Puzzle
	Dual Processor Woes
	What? More Easter Eggs?
	Corrections
	Acknowledgements

